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In this paper the energy streamlines, energy paths, and energy streak lines in a steady
or unsteady inhomogeneous acoustic field next to an unstable oscillating boundary,
such as a vortex sheet or shear layer, are determined. The theory in the paper applies
also to an evanescent wave produced by total internal reflection, and to any other
type of edge wave, e.g. a coastally or topographically trapped wave in geophysical
fluid dynamics. The idea of the paper is that energy velocity, i.e. energy flux divided by
energy density, is defined at every point in space and time, not merely when averaged
over a cycle. Integration of the ordinary differential equation for energy velocity as
a function of position and time gives the energy paths. These paths are calculated
explicitly, and are found to have starting and finishing directions very different
from those of cycle-averaged paths. The paper discusses the physical significance of
averaged and non-averaged energy paths, especially in relation to causality. Many
energy paths have cusps, at which the energy velocity is instantaneously zero. The
domain of influence of an arbitrary point on the boundary of a steady acoustic edge
wave is shown to lie within 45◦ of a certain direction, in agreement with a known result
on shear-layer instability in compressible flow. The results are consistent with flow
visualization photographs of near-field jet noise. The method of the paper determines
domains of influence and causality in any wave problem with an explicit solution, for
example as represented by a Fourier integral.

1. Introduction
A method often used to introduce the idea of the energy velocity of a wave is to

define this velocity as the ratio

energy flux transmitted by the wave

energy density of the wave
. (1.1)

The ratio is then shown to be equal to the group velocity ∂ω/∂k of the wave, i.e.
the gradient of the wave frequency ω with respect to the wave vector k, where ω is
related to k by the dispersion relation of the wave. The method has been used by
Lighthill (1960, equations A4, A15; 1965, equations 82, 87; 1978, p. 257; 1981, pp. 185,
189); by writers on general wave theory (Buchen 1971; Hayes 1977, 1980; Boulanger
& Hayes 1993, pp. 158–159; Scott 1995); and, especially, by workers in geophysical
fluid dynamics (e.g. Longuet-Higgins 1964; Buchwald 1972; Luyten 1973; Thomson
1973; Noda 1986; Gill 1982, pp. 141, 267, 502; Pedlosky 1987, pp. 121–122, 373–374).
In all this work, the energy flux and energy density are first averaged over a wave
cycle, so that energy flow on the scale of a wavelength and period is not described.
On the other hand, (1.1) is equally valid without averaging, and it then determines
energy velocity at every point in space and time. It may thus be used to determine
the ‘fine-scale’ energy flow, and not merely the simpler ‘cycle-averaged’ energy flow.
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We shall indicate differentiation with respect to time by a dot. Then if the value of
(1.1) at an arbitrary position x and time t is denoted U (x, t), the energy paths are the
solutions x(t) of the ordinary differential equations

ẋ = U (x, t). (1.2)

We may think of these solutions x(t) as representing the motion of ‘energy particles’ –
just as, if U represented fluid velocity instead of energy velocity, the solutions would
represent the motion of ‘fluid particles’. Such energy particles are fictitious, but
perhaps no more so than fluid particles. Indeed, from a molecular point of view the
macroscopic fluid velocity u(x, t) is defined as the ratio of mass flux to mass density,
analogously to (1.1), and the motion of a fluid particle is defined by a solution x(t)
of ẋ = u(x, t). Thus in problems of energy transfer by waves, it seems legitimate to
take (1.1)–(1.2) as a starting point and determine in detail the energy paths.

The positions at a fixed time t1 of all the energy particles which passed through
the point x0 at any earlier time form the energy streak line at t1 from x0. We may
also consider at time t1 the ‘frozen’ equations

ẋ = U (x, t1). (1.3)

The solutions x(t) of these equations form the energy streamlines at time t1. In this
paper the energy streamlines, energy paths, and energy streak lines in an acoustic
edge wave (also called an evanescent wave, or an inhomogeneous wave, or a subsonic
wave) are determined. The wave may be steady or unsteady. The method applies
equally to any wave for which the energy flux can be unambiguously defined at a
point, as appears always to be the case for waves in fluids. The method would not
apply to electromagnetic waves, because the Poynting vector, a measure of energy
flux at a point, is ambiguous to the extent of an arbitrary solenoidal field, which
does not alter the total energy flowing out of a closed region. For waves in fluids, a
comparable ambiguity has sometimes appeared to be present, especially in problems
of geophysical fluid dynamics, but the ambiguity has later been removed by careful
determination of which energy fluxes are associated with the wave (e.g. Gill 1982,
p. 502; Pedlosky 1987, pp. 373–374).

We analyse unsteady edge waves in § 2 and steady edge waves in § 3. The physical
significance of energy paths is discussed in § 4.

2. Unsteady edge waves
2.1. Pressure field; dispersion relation

We consider a sound wave in which the acoustic pressure p is of the form

p = p0e
i(k · x−ωt). (2.1)

The amplitude p0 is assumed small enough for p to satisfy the wave equation. The
speed of sound will be denoted c0, so that k and ω satisfy the dispersion relation

ω2 = c2
0k · k. (2.2)

To represent an edge wave, we allow k and ω to be complex. Denoting real parts by
a subscript r, and imaginary parts by a subscript i, we put

k = kr + iki, ω = ωr + iωi. (2.3)
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Then the dispersion relation (2.2) is

ω2
r − ω2

i = c2
0(kr · kr − ki · ki), ωrωi = c2

0kr · ki. (2.4)

When ωi = 0, the wave is steady; otherwise it is unsteady. In calculations for unsteady
waves, it is convenient to use the slowness s0 and the slowness vector s defined by

s0 = 1/c0, s = k/ω. (2.5)

Then the dispersion relation is

s20 = s · s. (2.6)

We put

s = sr + isi, sr = |sr|, si = |si|, (2.7)

to obtain

s20 = s2r − s2i , sr · si = 0. (2.8)

Thus sr and si are perpendicular, and sr > si. The relations (2.8) are used repeatedly
in the calculations below. We define ω0 > 0 by

ω2
0 = ω2

r + ω2
i . (2.9)

Simple consequences of the above definitions are

sr = (k/ω)r = (ωrkr + ωiki)/ω
2
0 , si = (k/ω)i = (−ωikr + ωrki)/ω

2
0 , (2.10a, b)

kr = ωrsr − ωisi, ki = ωisr + ωrsi. (2.10c)

In (2.1) let us define

θ = θ(x, t) = k · x− ωt. (2.11)

Since x and t are real, we have θ = θr + iθi where

θr = θr(x, t) = kr · x− ωrt, θi = θi(x, t) = ki · x− ωit. (2.12a, b)

Therefore p = p0e
−θi eiθr , with real part

pr = p0e
−θi cos θr. (2.13)

Typical contours of pr at a fixed time are shown in figure 1(a). Since sr and si are
perpendicular, we shall use a coordinate system for x in which the sr-direction, drawn
horizontally to the right, is the xr-direction, and the si-direction, drawn vertically
upwards, is the xi-direction. (The notation xr, xi is convenient, though somewhat
illogical, because x is real; we make no use of ‘complex position’ or ‘complex rays’.)
Equations (2.8)–(2.12) give

θr = ωrsr(xr − t/sr)− ωisixi, θi = ωisr(xr − t/sr) + ωrsixi. (2.14a, b)

Therefore in our coordinate system, the phase propagates to the right at speed 1/sr.
For definiteness, we shall always take ωr and ωi to be non-negative; sr and si are non-
negative by definition. Representative plots are obtained with (sr, si, s0) = (

√
2, 1, 1),

(ωr, ωi, ω0) = (1, 1,
√

2), p0 = 1, t = 0. In figure 1(a), the contours pr = 0 are
the upward-sloping straight lines θr = (n + 1

2
)π, with n integral, and have slope

ωrsr/(ωisi). The contours with a given non-zero value of |pr| all touch a downward-
sloping straight line corresponding to a fixed value of θi; such a straight line, parallel
to ABC in the figure, has slope −ωisr/(ωrsi). Thus as evident from (2.13), at a fixed
time the pressure does not oscillate in the direction θr = constant, and does not grow
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Figure 1. (a) Pressure contours pr = 0, ±0.1, ±1, ±10 for (ωr, ωi, ω0) = (1, 1,
√

2), (sr, si, s0) =

(
√

2, 1, 1), p0 = 1, t = 0. Thus θr =
√

2xr − xi, θi =
√

2xr + xi, pr = e−θi cos θr, and the pattern

propagates to the right at speed 1/sr = 1/
√

2. Contours with a given non-zero value of |pr| touch a

straight line, parallel to ABC, of slope −ωisr/(ωrsi) = −√2. The contours pr = 0 are straight lines

with slope ωrsr/(ωisi) =
√

2. (b) As (a), but for a steady wave with (ωr, ωi, ω0) = (1, 0, 1); contours

are pr = 0, ±0.1, ±1. Thus (kr, ki) = (
√

2, 1), θr =
√

2xr, and θi = xi. The contours pr = 0 are vertical
straight lines.

or decay in the direction θi = constant. The directions of kr and ki are given by (2.10).
For example, if ωr and ωi are positive, then kr points to the right and downwards,
while ki points to the right and upwards.

In the (xr, xi)-plane in figure 1(a), an edge wave may be specified by selecting a
half-plane with a straight-line edge. This edge need not be parallel to the xr-axis. The
position and direction of the edge determine the variation of θr and θi along the edge.
Thus in a particular problem, the boundary conditions determine where in figure 1(a)
the edge should be taken, and how long a segment of the edge is relevant to the
problem. A radiation condition determines on which side of the edge the half-plane
should be taken. For example, if a region has an oscillating unstable boundary, the
position of the edge in figure 1(a) is determined by the spatial and temporal growth
rates of the instability. That is, with suitable values of ωr, ωi, kr, and ki, subject to the
dispersion relation (2.4), the edge may be so placed to match the boundary conditions.
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Thus the angle between the boundary and the straight-line contours pr = 0 depends
on the strength of the instability. If the unstable boundary is that of a jet issuing
from a nozzle, the relevant part of the boundary is a finite segment from the end
of the nozzle to the region where nonlinear effects can no longer be ignored. Such
a segment, and the adjacent edge wave, are visible in photographs (e.g. Tam 1971,
figure 7).

2.2. Energy velocity; the hodograph

In a fluid with undisturbed density ρ0, the momentum equation shows that the
acoustic velocity in the wave (2.1) is u = ρ−1

0 (k/ω)p. Let us put p0 = ερ0c
2
0, where

ε� 1. Then in terms of the slowness s = k/ω, we have

u = εc2
0se

i(k · x−ωt) = εc2
0(sr + isi)e

−θi+iθr . (2.15)

Therefore the real part ur of u is

ur = εc2
0e
−θi (sr cos θr − si sin θr). (2.16)

The energy flux transmitted by the wave, i.e. the energy transmitted per unit area
per unit time, is the intensity I = prur. Equations (2.13) and (2.16) give

I = εp0c
2
0e
−2θi (cos θr)(sr cos θr − si sin θr)

= 1
2
εp0c

2
0e
−2θi{sr(1 + cos 2θr)− si sin 2θr}. (2.17)

The divergence ∇ · I of the intensity is

∇ · I = −εp0e
−2θi

{
ωr sin 2θr + ωi

(
s2r
s20

+ cos 2θr

)}
. (2.18)

The kinetic and potential energy of the wave, per unit volume, are 1
2
ρ0ur · ur and

1
2
(ρ0c

2
0)
−1p2

r . Their total W is

W = 1
2
εp0c

2
0e
−2θi (s2r + s20 cos 2θr). (2.19)

Calculation of ∂W/∂t, and comparison with (2.18), confirm that I and W satisfy the
equation of conservation of acoustic energy, namely

∂W

∂t
+ ∇ · I = 0. (2.20)

The energy velocity is

U =
I

W
=

2(cos θr)(sr cos θr − si sin θr)

s2r + s20 cos 2θr

. (2.21)

Therefore the energy paths are the solutions (xr(t), xi(t)) of

ẋr =
sr(1 + cos 2θr)

s2r + s20 cos 2θr

, ẋi =
−si sin 2θr

s2r + s20 cos 2θr

, (2.22)

where, by (2.14), θr = ωrsrxr − ωisixi − ωrt. We solve these equations in § 2.4.1.
With U = (Ur, Ui), (2.21) gives

Ui

Ur

= − si
sr

tan θr, (s2r + s20)U
2
r − 2srUr + s2rU

2
i = 0. (2.23a, b)
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Figure 2. The tip of the energy velocity arrow from (0, 0) to (Ur, Ui) moves anti-clockwise around the
ellipse (2.23b) in the hodograph plane, taking a time π/ωr for one complete revolution. The rightmost

point P of the ellipse is at (2sr/(s
2
r + s20), 0) and the highest point Q is at (sr/(s

2
r + s20), 1/(s2r + s20)1/2).

Also from (2.21), we obtain

|U |2
c2

0

= 1−
(

s2i
s2r + s20 cos 2θr

)2

. (2.24)

Equation (2.23b) defines an ellipse in the (Ur, Ui)-plane, i.e. in the energy hodograph
plane. This ellipse, which passes through the origin and is centred at (sr/(s

2
r + s20), 0),

has height 2/(s2r + s20)
1/2 and width 2sr/(s

2
r + s20). Therefore the ratio of its height

to width is (s2r + s20)
1/2/sr. Since this exceeds 1, the ellipse is taller that it is wide,

i.e. its major axis is vertical and its minor axis is horizontal. An arrow from the
origin to a point on the ellipse represents energy velocity. At a fixed position (xr, xi),
equation (2.12a) shows that θr varies as −ωrt, so that, by (2.23a), the tip of the arrow
moves anti-clockwise round the ellipse, as illustrated in figure 2. The period for one
revolution is π/ωr. Equation (2.24) shows that |U |6 c0, i.e. that the energy velocity
never exceeds the speed of sound c0.

2.3. Energy streamlines

The energy streamlines at time t1 = 0 are obtained by solving (2.22) with θr =
ωrsrxr − ωisixi. The ratio of the equations in (2.22) is

dxi

dxr

= − si
sr

tan(ωrsrxr − ωisixi). (2.25)

Therefore the streamline pattern repeats itself at intervals of π/(ωrsr) in the xr-
direction, and contains straight-line streamlines of slope ωrsr/(ωisi) intercepting the
xr-axis at the points (ωrsr)

−1(nπ − tan−1{ωrs
2
r/(ωis

2
i )}), n = 0,±1, . . . . (We shall omit

the word ‘energy’ from terms such as energy streamline or energy streak line where
the meaning is clear.) Wherever cos θr = 0, the velocity field has a singular point,
i.e. dx/dt = 0. Thus the singular points occupy the family of curves θr = (n + 1

2
)π,

n = 0,±1, . . . , i.e. straight lines of slope ωrsr/(ωisi) intercepting the xr-axis at the
points (n+ 1

2
)π/(ωrsr). Phase-plane analysis shows that the streamlines approach the
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Figure 3. (a) Typical energy streamlines (——) at time t1 = 0, including straight-line energy
streamlines intersecting the xr-axis at B1: xr = {π − tan−1(ωrs

2
r/(ωis

2
i ))}/(ωrsr) and at B2 a distance

π/(ωrsr) to the right of B1. The lines of singular points (- - - -), where the energy velocity is
instantaneously zero, intersect the xr-axis at A1: xr = 1

2
π/(ωrsr) and at A2: xr = 3

2
π/(ωrsr). The

straight lines in the figure have slope ωrsr/(ωisi). (b) As (a) but for a steady edge wave, i.e. ωi = 0
and ωrsr = kr. The straight-line energy streamlines have become lines of singular points (- - - -)
by merging with the original lines of singular points. Thus B1 has become coincident with A1 at
xr = 1

2
π/kr; likewise B2 with A2 at 3

2
π/kr.

singular points vertically. The streamlines are horizontal where they meet straight
lines of slope ωrsr/(ωisi) intersecting the xr-axis at the points nπ/(ωrsr), n = 0,±1, . . .
Typical energy streamlines, including the direction of energy flow, are shown for
t1 = 0 in figure 3(a). The complete streamline pattern for t1 = 0 is obtained by giving
these streamlines every possible translation in the direction of the sloping straight
lines in the figure. Most of the streamlines form parts of inverted slanted ‘U’ shapes,
on which the energy flow is towards the singular point on each U. The exceptions
are the straight-line streamlines, on which the energy flow is always upwards and to
the right. Since the streamline pattern translates to the right at speed 1/sr, the figure
determines the streamline pattern at all times.

2.4. Energy paths

2.4.1. The equation of the energy paths

The energy paths are obtained by solving (2.22). The time derivative of θr is

θ̇r = ωrsrẋr − ωisiẋi − ωr (2.26)

=
s2i (ωr cos 2θr + ωi sin 2θr)

s2r + s20 cos 2θr

. (2.27)
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It is convenient to define ‘up-angles’ θu by the identity

ωr cos 2θr + ωi sin 2θr ≡ ω0 sin 2(θr − θu). (2.28)

This requires ωr = −ω0 sin 2θu and ωi = ω0 cos 2θu, so that the up-angles are

θu = nπ − 1
2

tan−1

(
ωr

ωi

)
, n = 0,±1, . . . . (2.29)

The reason for the name up-angle is that corresponding to the values θr = θu are
straight-line energy paths on which the vertical component of energy flow is upwards;
see the remarks after (2.33) and (2.34). Division of (ẋr, ẋi) by θ̇r gives the equations
for the energy paths parametrically in terms of θr as

dxr

dθr

=
sr(1 + cos 2θr)

ω0s
2
i sin 2(θr − θu)

,
dxi

dθr

=
− sin 2θr

ω0si sin 2(θr − θu)
, (2.30a, b)

dt

dθr

=
s2r + s20 cos 2θr

ω0s
2
i sin 2(θr − θu)

. (2.30c)

Integration of these equations shows that the energy path which passes through the
point (xr0, xi0) at time t0 is

ω0s
2
i

sr
(xr − xr0) =

ωr

ω0

(θr − θr0) +
ωi

2ω0

ln

∣∣∣∣ sin 2(θr − θu)

sin 2(θr0 − θu)

∣∣∣∣+
1

2
ln

∣∣∣∣ tan(θr − θu)

tan(θr0 − θu)

∣∣∣∣ ,
(2.31a)

ω0si(xi − xi0) = −ωi

ω0

(θr − θr0) +
ωr

2ω0

ln

∣∣∣∣ sin 2(θr − θu)

sin 2(θr0 − θu)

∣∣∣∣ ,
(2.31b)

ω0s
2
i

s20
(t− t0) =

ωr

ω0

(θr − θr0) +
ωi

2ω0

ln

∣∣∣∣ sin 2(θr − θu)

sin 2(θr0 − θu)

∣∣∣∣+
s2r
2s20

ln

∣∣∣∣ tan(θr − θu)

tan(θr0 − θu)

∣∣∣∣ .
(2.31c)

Here the parameter θr, an ‘unwrapped’ phase angle, may range over (−∞,∞), to cover
all times, and the constant θr0 is defined by

θr0 = ωrsrxr0 − ωisixi0 − ωrt0. (2.32)

A check of the calculation is that xr, xi, t, given by (2.31), satisfy identically the relation
θr = ωrsrxr − ωisixi − ωrt. In principle, elimination of θr from (2.31) gives the energy
path in the form (xr(t), xi(t)); but such elimination is not possible analytically.

2.4.2. Straight-line energy paths

Equations (2.30a, b) or (2.22) give

dxi

dxr

= − si
sr

tan θr. (2.33)

Therefore the energy paths are straight lines if θ̇r = 0 for all t, i.e. if sin 2(θr− θu) = 0.
This requires θr = θu + 1

2
mπ, m = 0,±1, . . . . First let m be even, so that

ẋr =
(ω0 + ωi)sr

ω0s2r + ωis
2
0

, ẋi =
ωrsi

ω0s2r + ωis
2
0

,
dxi

dxr

=

(
ωr

ω0 + ωi

)
si

sr
. (2.34a–c)
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Then ẋr, ẋi and dxi/dxr are all positive, and the energy flow is upwards along the
straight line. (The term ‘upwards’ will always mean ‘with an upwards component’ not
‘vertically upwards’.) The expression θr = θu + 1

2
mπ may be written when m is even

as θr = n′π − 1
2

tan−1(ωr/ωi), n
′ = 0,±1, . . . , and then gives the same set of values as

(2.29); hence the term up-angles for the values of θu. Now let m be odd. Then

ẋr =
(ω0 − ωi)sr

ω0s2r − ωis
2
0

, ẋi =
−ωrsi

ω0s2r − ωis
2
0

,
dxi

dxr

= −
(

ωr

ω0 − ωi

)
si

sr
. (2.35a–c)

Thus ẋr is still positive, but ẋi and dxi/dxr are negative, i.e. the energy flow is
downwards along the straight line. The expression for θr with m odd may be written
θr = (n′+ 1

2
)π− 1

2
tan−1(ωr/ωi), n

′ = 0,±1, . . . . These values may be called down-angles
θd, so that, apart from multiples of π,

θd = θu + 1
2
π. (2.36)

The downwards straight-line energy paths are at a steeper angle to the horizontal
direction than are the upwards straight-line paths. This follows from comparing the
denominators in (2.34c) and (2.35c). Since sr > si, and we are assuming ωr > 0,
the angle between the upwards path and the horizontal is less than 45◦. It may be
checked that the energy velocities U = (Ur, Ui) = (ẋr, ẋi) obtained from (2.34) and
(2.35) satisfy the hodograph relations (2.23)–(2.24).

2.4.3. Limiting directions of energy paths

The straight-line energy paths determine the limiting directions, as t→ ±∞, of an
arbitrary energy path. The limit θr → θu in (2.31) gives (except when θr0 = θu or θd)

ω0s
2
i xr

sr
≈
(
ω0 + ωi

2ω0

)
ln |θr − θu| → −∞, ω0sixi ≈ ωr

2ω0

ln |θr − θu| → −∞,
(2.37a, b)

ω0s
2
i t

s20
≈ 1

2

(
s2r
s20

+
ωi

ω0

)
ln |θr − θu| → −∞, (2.37c)

i.e.
xi

xr

→
(

ωr

ω0 + ωi

)
si

sr
, t→ −∞. (2.38)

Similarly, the limit θr → θd gives (except when θr0 = θu or θd)

ω0s
2
i xr

sr
≈ −

(
ω0 − ωi

2ω0

)
ln |θr − θd| → ∞, ω0sixi ≈ ωr

2ω0

ln |θr − θd| → −∞,
(2.39a, b)

ω0s
2
i t

s20
≈ −1

2

(
s2r
s20
− ωi

ω0

)
ln |θr − θd| → ∞, (2.39c)

i.e.
xi

xr

→ −
(

ωr

ω0 − ωi

)
si

sr
, t→∞. (2.40)
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The exceptional cases θr0 = θu or θd correspond to an upwards or downwards straight-
line energy path. Thus at large negative times, all energy paths except the discrete set
of downwards straight-line paths are asymptotically parallel to the upwards straight-
line paths. At large positive times, all energy paths except the discrete set of upwards
straight-line paths are asymptotically parallel to the downwards straight-line paths.
The limiting energy velocity is that of the energy on these straight-line paths. Since
the amount of energy carried along a single path in a continuum of paths is zero, we
may say that, if energy paths are extended to the range −∞ < t < ∞, then all of the
energy originates in the lower left region, moving upwards and right, and ends in the
lower right region, moving downwards and right.

2.4.4. Cusps on energy paths

An energy path has a cusp where ẋr = ẋi = 0, i.e. cos θr = 0. This occurs at
θr = θrc ≡ (n+ 1

2
)π, n = 0,±1, . . . , where (2.30) gives

dxr

dθr

= 0,
d2xr

dθ2
r

= 0,
d3xr

dθ3
r

= − 4sr

ωrs
2
i

,
dxi

dθr

= 0,
d2xi

dθ2
r

= − 2

ωrsi
,

dt

dθr

= − 1

ωr

.

(2.41)

The values of (xr, xi, t) at a cusp will be denoted (xrc, xic, tc) and are obtained from
(2.31) by putting θr = θrc. The energy path near a cusp is

xr − xrc ≈ − 2sr

3ωrs
2
i

(θr − θrc)
3, xi − xic ≈ − 1

ωrsi
(θr − θrc)

2, t− tc ≈ − 1

ωr

(θr − θrc),

(2.42)

or equivalently

xr − xrc ≈ 2ω2
r sr

3s2i
(t− tc)3, xi − xic ≈ −ωr

si
(t− tc)2. (2.43)

Thus

(xi − xic)
3 ≈ − 9si

4ωrs2r
(xr − xrc)

2. (2.44)

The cusps all point vertically upwards, and the energy path is below the horizontal
line xi = xic.

2.4.5. Energy paths from a point; domains of influence and dependence

We now describe all the energy paths from the point (xr0, xi0) = (0, 0). Thus
θr0 = −ωrt0, where t0 is the starting time. From the periodicity of the differential
equations (2.30), the paths are generated by an interval −π6 θr06 0, i.e. 06 t06 π/ωr.
The initial energy velocity at (0, 0) varies with t0 as in the hodograph diagram shown
in figure 2. A set of paths is shown in figure 4(a) for t06 t6

5
2
π/ωr, each path

corresponding to a different starting time t0 in the interval 06 t06 π/ωr. Although
we have taken (xr0, xi0) = (0, 0), the results are identical for all values of (xr0, xi0),
except for a phase difference.

The energy paths are given by (2.31). The union of all the paths for 06 t06 π/ωr

and t> t0 fills the region which can be reached by energy from (0, 0). This region is the
domain of influence of (0, 0). It is the region which would be covered by the energy
paths in figure 4(a) if each path were extended to infinity (by taking t → ∞) and an
infinite number of paths were included (one for every t0 in the interval 06 t06 π/ωr).
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Figure 4. (a) Energy paths from (0, 0) for (ωr, ωi, ω0) = (1, 1,
√

2), (sr, si, s0) = (
√

2, 1, 1). Starting
times t0 lie in the range 06 t06 π/ωr, and each path is drawn for t06 t6

5
2
π/ωr. The path OA

leaves (0, 0) vertically downwards, and the dashed line is the asymptote (2.46) of the locus of cusps.
(b) Further detail near (0, 0). The dashed line is x3

i = (9si/(4ωrs
2
r ))x2

r , an approximation to the locus
of cusps near (0, 0). (c) As (a), but for a steady wave with (ωr, ωi, ω0) = (1, 0, 1).

Thus the domain of influence is an infinitely long wedge with curved boundaries;
these are the extensions to infinity of the curves marked OA and OB. Similarly, the
union of all the energy paths before they reach (0, 0) fills the region from which energy
can originate if it is to pass through (0, 0). This region is the domain of dependence
of (0, 0). It is not shown in figure 4(a), but would be similar to the mirror image, in
the xi-axis, of the domain of influence.

The lower boundary of the domain of influence of (0, 0), i.e. OA and its extension,
is the energy path which leaves (0, 0) vertically downwards. This boundary is the right
half of a path with a cusp at (0, 0), and is the path for which t0 = 1

2
π/ωr. Hence its

equation is (2.31) with (xr0, xi0, t0) = (0, 0, 1
2
π/ωr) and θr0 = − 1

2
π. Its asymptote far

from the origin is

xi +

(
ωr

ω0 − ωi

)
si

sr
xr =

θu

ω0si
+

1

2

(
ωr

ω0 − ωi

)
1

ω0si
ln

(
2ω0

ω0 + ωi

)
. (2.45)

Hence the asymptote intersects the xi-axis at the value of xi given by the right-
hand side of (2.45), which for the parameter values in figure 4(a) is xi = −0.14252.
The asymptote is indistinguishable from the actual path except very close to the
origin, where the path is curved. An approximation to this curved path is x3

i =
−(9si/(4ωrs

2
r ))x

2
r .

The upper boundary of the domain of influence in figure 4(a) is the line of cusps.
These occur where θr = − 1

2
π and lie on energy paths with −θu/ωr6 t06

1
2
π/ωr.

Therefore the equation of the line of cusps is (2.31) with (xr0, xi0, θr) = (0, 0,− 1
2
π)

and θr0 taken to vary from − 1
2
π to − 1

2
tan−1(ωr/ωi); in (2.31) it is necessary to put
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Figure 5. Energy paths from the segment |xr|6 π/(ωrsr) of the xr-axis at time t0 = 0, for

(ωr, ωi, ω0) = (1, 1,
√

2), (sr, si, s0) = (
√

2, 1, 1). (a) Paths from many values of xr, drawn for
06 t6 2π/ωr. (b) Further detail near the positive xr-axis for 06 t6 1

5
π/ωr. (c, d) As (a, b), but

for a steady wave with (ωr, ωi, ω0) = (1, 0, 1).

t0 = −θr0/ωr. The asymptote far from the origin is

xi −
(

ωr

ω0 + ωi

)
si

sr
xr =

1
2
π + θu

ω0si
− 1

2

(
ωr

ω0 + ωi

)
1

ω0si
ln

(
2ω0

ω0 − ωi

)
. (2.46)

Hence the asymptote intersects the xi-axis at the value of xi given by the right-hand
side of (2.46), which for the parameter values in figure 4(a) is xi = 0.55170. The
asymptote is shown as the upper dashed line in the figure; the distance from the
asymptote to the cusps is appreciable only very close to the origin. Near the origin,
an approximation to the position of the cusps is x3

i = (9si/(4ωrs
2
r ))x

2
r , as shown in

figure 4(b).

2.4.6. Energy paths from a segment

Energy paths leaving the segment |xr|6 π/(ωrsr) of the xr-axis at time t0 = 0 are
shown in figure 5(a). As the spatial period in the xr-direction is π/(ωrsr), paths leaving
06 xr6 π/(ωrsr) are the same size and shape as those leaving −π/(ωrsr)6 xr6 0.
Energy leaves downwards from −π/(ωrsr) < xr < − 1

2
π/(ωrsr) and from 0 < xr <

1
2
π/(ωrsr). This is especially evident at the horizontal boundary AB towards the left

of figure 5(a) and in the detail, shown in figure 5(b), of a region near the positive
xr-axis. All energy paths ultimately head downwards, except for the discrete set of
upwards straight-line paths.

2.4.7. Moving coordinates

The equations in this section may be expressed in moving coordinates (θr, θi) instead
of the fixed coordinates (xr, xi). For example, the time derivative of θi is

θ̇i = ωisrẋr + ωrsiẋi − ωi =
ω0s

2
i cos 2(θr − θu)

s2r + s20 cos 2θr

. (2.47)
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Figure 6. (a) Energy streak lines from (0, 0) for observation times t1 = 1
4
nπ/ωr, n = 1, 2, . . . , 10

and departure times from 0 to t1. The lines for n = 7, 8, 9, 10 are marked a, b, c, d; lines for n = 1,
2, . . . , 6 are segments of c, d, a, b, c, d respectively. The frequency and slowness parameters are

(ωr, ωi, ω0) = (1, 1,
√

2), (sr, si, s0) = (
√

2, 1, 1). The extended and filled region of lines is the same as
that of figure 4(a), i.e. is the domain of influence of (0, 0). (b) As (a), but for a steady wave with
(ωr, ωi, ω0) = (1, 0, 1).

Division by θ̇r gives

dθi

dθr

= cot 2(θr − θu). (2.48)

Hence

θi − θi0 =
1

2
ln

∣∣∣∣ sin 2(θr − θu)

sin 2(θr0 − θu)

∣∣∣∣ . (2.49)

Here the constant θi0 is defined by θi0 = ωisrxr0 +ωrsixi0−ωit0. Equation (2.49) gives
energy paths in a frame of reference moving with the pressure contours of pr shown
in figure 1, i.e. in a frame moving ‘with the phase speed’. Thus (2.49) gives the ‘drift’
of energy relative to the phase lines. Equation (2.49) is also a simple consequence
of (2.31) and the definition of θi. The (θr, θi)-coordinate system, though superficially
attractive, is not orthogonal, and the main results in this section are most easily
derived, as here, in the fixed orthogonal system (xr, xi) in which the ambient fluid is
at rest.

2.5. Energy streak lines

At an observation time t1, the energy particles which left a fixed point (xr0, xi0) at
earlier times form a curve, the energy streak line at time t1 from (xr0, xi0). A plot of
such a streak line is obtained as follows: first (2.22) is solved with initial condition
(xr(t0), xi(t0)) = (xr0, xi0), where t0 is a parameter, namely the departure time; then
(xr(t1), xi(t1)) is plotted for all t0 with t06 t1. Streak lines from (0, 0) are shown in
figure 6(a) for various observation times t1 in the range 0 to 5

2
π/ωr. Each streak line

in the figure is for 06 t06 t1 at fixed t1. The streak lines consist of slanted U-shaped
segments, joined at cusps. Each of these segments is larger than the one to the left,
and extends further from the xr-axis, both above and below it. For small t1, only
part of the first segment is present; as t1 increases, the number of segments increases
indefinitely.

The streak lines from (0, 0) for all t1 fill a region consisting of all the points in space
which can be reached by energy from (0, 0). This is simply the domain of influence of
(0, 0), as defined in § 2.4.5, where it was constructed as the union of the energy paths
from (0, 0). Thus a check of our calculations is that the extended and filled region of
streak lines in figure 6(a) must be the same as the extended and filled region of path
lines in figure 4(a), as the figures confirm. In § 2.4.5 we saw that the lower boundary
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Figure 7. (a) Energy streak lines from points xr = 0, 1
10
π/(ωrsr), . . . , π/(ωrsr) on the xr-axis;

observation time 1
2
π/ωr. (b) As (a), but with xr = 0, 1

5
π/(ωrsr), . . . , π/(ωrsr) and observation times

1
10
π/ωr,

2
10
π/ωr, . . . , π/ωr. Departure times are from 0 to the observation time. Frequency and

slowness parameters: (ωr, ωi, ω0) = (1, 1,
√

2), (sr, si, s0) = (
√

2, 1, 1). (c, d) As (a, b), but for a steady
wave with (ωr, ωi, ω0) = (1, 0, 1).

of the region is the energy path which leaves (0, 0) vertically downwards; figure 6(a)
shows that this boundary is equally the locus of cusps on streak lines. The upper
boundary is the locus of cusps on energy paths, or equally an envelope of smooth
parts of streak lines.

Energy streak lines from the segment 06 xr6 π/(ωrsr) of the xr-axis are shown
in figure 7(a) for the single observation time 1

2
π/ωr and departure times from 0 to

1
2
π/ωr. Similarly constructed streak lines are superposed in figure 7(b) for observation

times 1
10
π/ωr,

2
10
π/ωr, . . . , π/ωr. The streak lines in figure 7(a) may be compared with

the path lines in figure 5(b).

3. Steady edge waves
A wave is steady if the frequency ω is real, i.e. ωi = 0. Thus ω = ωr and the

dispersion relation (2.2) for an edge wave becomes

ω2
r = c2

0(kr · kr − ki · ki), kr · ki = 0. (3.1a, b)

Hence kr and ki are perpendicular. (It may be checked that the edge wave given
by equation (19) in Tam (1971) satisfies (3.1).) The definition (2.9) of ω0 gives
ω0 = ωr = ω, so that, by (2.10a, b), the real and imaginary parts of the slowness
vector are

sr = kr/ω0, si = ki/ω0. (3.2)

We put kr = |kr| and ki = |ki|, so that sr = kr/ω0 and si = ki/ω0. Then with k0 defined
by k0 = ω0s0 = ω0/c0, equation (3.1a) is

k2
0 = k2

r − k2
i . (3.3)
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The xr-direction is that of kr, and the xi-direction is that of ki, i.e. kr = (kr, 0) and
ki = (0, ki). Equations (2.12) or (2.14) give

θr = krxr − ω0t, θi = kixi. (3.4)

The real part of the pressure is

pr = p0e
−θi cos θr = p0e

−kixi cos(krxr − ω0t). (3.5)

Typical contours of pr at a fixed time t are shown in figure 1(b). The phase propagates
to the right at speed ω0/kr. Parameter values for plots of steady waves will be obtained
from those for unsteady waves by taking ωi = 0 instead of ωi = 1. Thus in figure
1(b) we have p0 = 1, t = 0, (sr, si, s0) = (

√
2, 1, 1), and (ωr, ωi, ω0) = (1, 0, 1), so that

(kr, ki) = (
√

2, 1) and (θr, θi) = (
√

2xr, xi), whence pr = e−xi cos(
√

2xr). A steady edge
wave corresponds in figure 1(b) to a half-plane with a straight-line edge; the edge
need not be parallel to the xr-axis. The relation between such a half-plane and the
boundary conditions of a problem is as discussed at the end of § 2.1. The jet-noise
photograph there referred to (Tam 1971, figure 7) is of a steady edge wave; the
photograph shows not the energy paths themselves but the domain of influence of
acoustic sources in the jet, and this domain has the shape and orientation predicted
by our theory. A full analysis of the energy flow in this field would require a slight
extension of the theory we are presenting, because the photograph shows a meridional
section of a cylindrical sound field.

The energy paths are the solutions (xr(t), xi(t)) of

ẋr =
ω0kr(1 + cos 2θr)

k2
r + k2

0 cos 2θr

, ẋi =
−ω0ki sin 2θr

k2
r + k2

0 cos 2θr

, (3.6)

and typical hodograph relations are

Ui

Ur

= − ki

kr

tan θr, (k2
r + k2

0)U2
r − 2krk0c0Ur + k2

rU
2
i = 0, (3.7a, b)

|U |2
c2

0

= 1−
(

k2
i

k2
r + k2

0 cos 2θr

)2

. (3.7c)

Energy streamlines at time t1 = 0 are shown in figure 3(b). The pattern has period π/kr

in the xr-direction, and there are no longer any straight-line streamlines: as ωi → 0
they become lines of singular points, with equations xr = (n − 1

2
)π/kr, n = 0,±1, . . . ,

by merging with the original lines of singular points. The up-angles and down-angles
are θu = (n− 1

4
)π and θd = (n+ 1

4
)π, n = 0,±1, . . . , and the energy paths are

k2
i

kr

(xr − xr0) = θr − θr0 +
1

2
ln

∣∣∣∣∣ tan(θr + 1
4
π)

tan(θr0 + 1
4
π)

∣∣∣∣∣ , ki(xi − xi0) =
1

2
ln

∣∣∣∣ cos 2θr

cos 2θr0

∣∣∣∣ ,
(3.8a, b)

ω0k
2
i

k2
0

(t− t0) = θr − θr0 +
1

2

k2
r

k2
0

ln

∣∣∣∣∣ tan(θr + 1
4
π)

tan(θr0 + 1
4
π)

∣∣∣∣∣ . (3.8c)

On the upwards straight-line energy paths, (2.34) gives

ẋr =
ω0

kr

, ẋi =
ω0ki

k2
r

,
dxi

dxr

=
ki

kr

. (3.9)
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On the downwards straight-line paths, (2.35) gives

ẋr =
ω0

kr

, ẋi = −ω0ki

k2
r

,
dxi

dxr

= − ki

kr

. (3.10)

Thus the upwards and downwards straight-line paths are equally inclined to the
horizontal direction. Since ki < kr, the angle to the horizontal direction is less than
45◦. The energy speed |U | on a straight-line path, whether an upwards or a downwards
path, satisfies |U |2/c2

0 = 1− (ki/kr)
4. Every energy path, except a straight-line path, is

symmetric about a vertical axis; on the left-hand side of this axis, the energy flows
upwards, and on the right-hand side it flows downwards.

An energy path has a cusp where θr = θrc = (n+ 1
2
)π, n = 0,±1, . . .. At a cusp, the

first non-zero derivatives of (3.8) are

d3xr

dθ3
r

= −4kr

k2
i

,
d2xi

dθ2
r

= − 2

ki

,
dt

dθr

= − 1

ω0

, (3.11)

so that the energy path near a cusp (xrc, xic) is

(xi − xic)
3 ≈ − 9ki

4k2
r

(xr − xrc)
2. (3.12)

Energy paths from (0, 0) are shown in figure 4(c). The boundaries of the domain of
influence of (0, 0) have asymptotes

xi ∓ ki

kr

xr = ± 1

2ki

(π
2
− ln 2

)
≈ ±0.4388

ki

, (3.13)

where the upper sign corresponds to the upper boundary. These asymptotes, of slopes
±ki/kr, intersect the axes at xr ≈ −0.4388kr/k

2
i and xi ≈ ±0.4388/ki. Since ki < kr, the

angle between each asymptote and the horizontal axis is less than 45◦, consistent with
Jones (1977). Near the origin, the boundary is approximately x3

i = ±(9ki/(4k
2
r ))x2

r .
Although these limiting forms are mirror-symmetric about the xr-axis, the exact
domain of influence has this symmetry only approximately. Energy paths leaving the
segment |xr|6 π/kr of the xr-axis at time t0 = 0 are shown in figure 5(c, d). Equation
(2.49), with θu = − 1

4
π, shows that a simple relation between θr and θi on an energy

path is θi − θi0 = 1
2

ln | cos 2θr/ cos 2θr0|. Energy streak lines from the point (0, 0) are
shown in figure 6(b), and from the interval 06 xr6 π/kr of the xr-axis in figure 7(c, d).
The domain of influence of (0, 0) is the extended and filled region of streak lines in
figure 6(b), or equivalently the extended and filled region of path lines in figure 4(c).

4. The physical significance of energy paths
Some readers might feel that only energy fluxes averaged over a wave period are

important, and that instantaneous fluxes merely account for the periodic redistribution
of energy within a given region. Thus the energy arrows in figure 2 point on average
horizontally to the right, and one might think that the oscillation of the arrows could
lead at most to an unimportant wiggle about the horizontal direction. The author
believes this line of reasoning to be fallacious, because it ignores the long-range
coherence of the phase of the wave field, both in space and time. When a succession
of diagrams like figure 2 is used to construct an energy path by stepping forward in
time, the direction of the arrow on the path, as a function of time, is found to be
very different from the corresponding function of time at a fixed point, and does not
even remotely resemble a periodic oscillation about a fixed direction. Nevertheless,
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Figure 8. Incident wave i and reflected wave r at a boundary b producing total internal reflection.
Above b the wave field is evanescent. (a) Averaged energy paths a; (b) typical exact energy path e,
as in figures 4c and 5(c, d).

in one special case, the ordinary plane wave, the instantaneous and averaged energy
paths are identical, being straight lines on which the energy travels at constant speed
(at least on linear theory). This special case is of great importance, because far fields
are locally planar. Thus the ideas in this paper are fully consistent with traditional
analyses of energy flow in far fields, and only become interesting in, for example,
near fields or edge waves. Furthermore, the results in this paper in no way imply
that averaged energy fluxes are unimportant, even in near fields and edge waves.
The averaged fluxes are of great importance, and global energy balances cannot do
without them; but something is lost on taking the average, namely the origin and
destination of the energy passing through a point. The ideas presented in this paper
do not constitute a challenge to the method of averaging.

We have considered waves in semi-infinite half-space, but also of interest are
bounded beams and propagation in waveguides. For example, consider a spinning
acoustic field propagating inside a circular cylindrical duct. The way in which this
field is diffracted at the end of the duct onto Keller cones implies that the acoustic
energy in the duct propagates along piecewise linear helices (Chapman 1994); yet the
averaged energy flow is everywhere parallel to the axis of the duct (Lighthill 1978,
p. 420, equation 485). The conclusion seems inescapable that although a set of lines
parallel to the axis of the duct leads to a correct mathematical formula for the total
energy flow, these lines in themselves have no physical content, and only the piecewise
linear helices can be related to measurable properties of the angular distribution of
energy flow outside the duct. A similar argument shows that there are difficulties in
using averaged paths for source localization. This is most vivid in optics: an observer
seeing the sun and its reflection in a plane mirror finds that the mean energy flow
is parallel to the mirror; but shadows point away from the sun and its image, not
parallel to the mirror away from an ‘average sun’. The same applies to reflection of
sound which has come from a localized source. Again, the averaged paths appear to
lack physical content.

Let us relate the above ideas to the simplest example of an edge wave, namely
the spatially decaying steady evanescent wave produced by total internal reflection
at a plane boundary. For such a wave, the traditional analysis of energy flow is
as illustrated in figure 8(a): energy paths are parallel to the boundary, i.e. acoustic
energy does not propagate away from the boundary into the medium above it. This
analysis raises the difficulty of determining where the energy in the evanescent wave
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comes from. Figure 8(a) suggests that at every height above the boundary there is
an energy source far to the left; but there is no such source. Could the energy have
arrived during an initial transient while the wave field was set up, simply to be stored
thereafter? This is surely inconsistent with steady propagation of energy to the right.
Or does the difficulty go away when the incident field is taken to be a bounded wave
beam or a spherical wave? Our remarks in the previous paragraph make this seem
unlikely.

The analysis in this paper resolves the above difficulty, which is seen to be a
consequence of using energy paths averaged over a period. The exact energy paths, in
figures 4(c) and 5(c, d), show that the evanescent wave is continuously supplied with
energy from the incident wave, and continuously returns this energy to the reflected
wave. The path taken by the energy varies periodically as shown in figure 4(c). Except
for the discrete set of straight-line paths, every path has a cusp at the furthest point
from the boundary, as shown in figure 8(b); at this cusp, the energy direction changes
from upwards to downwards. An energy path arbitrarily close to a straight-line path
penetrates arbitrarily far into the medium above the boundary, but must ultimately
become cusped and return to the boundary. Thus our analysis leads us to reject the
idea that an evanescent wave consists of a store of non-propagating energy. It is
usually stated that the exponential decay of the field in an evanescent wave implies
that there is no energy flow perpendicular to the boundary. In our analysis, the
exponential decay is associated with exponential variation of ray-tube cross-sectional
areas. Equation (2.49), for example, rewritten with e2(θi−θi0) on the right-hand side,
may be shown to imply that the separation of neighbouring energy paths increases
exponentially with distance from the boundary, up to a maximum at the cusps on the
paths, and then decreases exponentially as the paths return to the boundary. Thus
our analysis is consistent with the usual determination of the amplitude of a wave by
applying conservation of energy to the energy flow in a ray tube.

The above discussion suggests that, in a wave field, averaged energy paths can
give a misleading view of causality. Let us say that an energy path which traces
back to an energy source is causal, and that any other energy path is acausal. The
paths in figure 8(b) are causal, because the energy source is at the lower left, but the
upper paths in figure 8(a) are acausal, because there is no energy source at the centre
left: i.e. averaged paths have introduced the difficulty referred to in connection with
source localization. Thus instantaneous energy paths provide superior insight into the
classical problem of total internal reflection.

Similar considerations apply to an unsteady edge wave. For example, in an unstable
flow which generates a temporally growing edge wave, the analysis in § 2 determines
where the wave energy originates and where it goes. Figures 1 and 4 show that
the more rapidly an edge wave grows in time, the greater is the tilt of the pressure
contours away from the slowness direction si, and the greater is the asymmetry of a
domain of influence about the slowness direction sr.

The detailed application of the method of this paper to a varied set of problems
in fluid dynamics would be of great interest. The method applies to any type of edge
wave, for example a topographically trapped wave in the ocean, or a trapped water
wave in a channel containing an obstacle. Possible applications are to the stability
of fluid flow next to a compliant surface (Brazier-Smith & Scott 1984; Lingwood
& Peake 1999); growth of waves in a boundary layer (Gaster 1962, 1965, 1968);
instability in a spatially developing flow (Huerre & Monkewitz 1990); displacement
of a sound beam on reflection from an elastic surface (Brekhovskikh 1980, p. 108;
Brekhovskikh & Godin 1992, p. 39); scattering of sound by a shear layer (Miles
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1958; Jones & Morgan 1974; Jones 1977); and jet noise (Tam 1971, 1972; Troutt &
McLaughlin 1982; Tam & Burton 1984a, b). A classical problem that could be looked
at afresh is that of energy flow near a caustic, e.g. near the sonic radius in a rotating
sound field (Prentice 1993); the well-known phase change of 1

2
π in the pressure field

on a ray gives no clue to the delay on an energy path. Indeed, the results of this paper
suggest that, near a caustic, energy is continuously flowing deep into the exponentially
decaying zone and later re-emerging from it at some distance from the point of entry.
Similarly, it would be possible to determine the energy paths in the Fresnel zone at a
shadow boundary; an intriguing question is whether the increasing width of such a
zone is related to the curved shape, near the origin, of the domain of influence shown
in figure 4(c). In all these examples, one may expect the calculation of the energy
paths to reveal hitherto unsuspected structure in the wave field.

This work owes much to discussions with F. J. Fahy at the Institute of Sound and
Vibration Research, University of Southampton, on source detection in acoustics, and
to a study of J. Lighthill’s papers on the energy velocity of fluid and elastic waves in
the cochlea.
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